Technical service of agriculture, forestry and transport systems

Ужик О. В.

Белгородская государственная сельскохозяйственная академия имени В.Я. Горина Белгород, Россия

БЕЗВРЕДНЫЙ ДОИЛЬНЫЙ АППАРАТ ДЛЯ КОРОВ

УДК 636.2.034: 631.3

Выполнено математическое моделирование рабочего процесса регулятора вакуумметрического давления. Получены уравнения для расчета его основных конструктивных параметров.

Ключевые слова: доильный аппарат, регулятор, трубка, корова, вымя.

Известно, что эффективность и полнота молоковыведения при доении коров зависит не только от рефлекторной деятельности организма животного, но и от технических характеристик доильного оборудования [1, 2]. Для предотвращения вредного воздействия на молочную железу коровы доильные установки снабжены многорежимными доильными аппаратами, обеспечивающими изменение вакуумного режима доения, частоты и соотношения тактов в зависимости от интенсивности потока молока, или автоматами снятия доильных аппаратов по завершению доения.

Однако, как известно, вымя коров зачастую имеет ярко выраженную неравномерность развития. В связи с этим необходимо создание таких доильных машин, которые обладали бы возможностью изменения режима доения каждой доле вымени коров в отдельности в зависимости от интенсивности потока молока в ней.

На основании проведенных исследований нами разработана новая конструктивная, на наш взгляд наиболее рациональная схема доильного аппарата с почетвертным управляемым режимом доения в зависимости от интенсивности потока молока [3]. Адаптивный доильный аппарат состоит из двухкамерных доильных стаканов 12 (рисунок 1), регуляторов вакуумметрического давления 7 и 14 в подсосковых камерах 11 и межстенных камерах 8 для каждого доильного стакана 12, и четырехкамерного коллектора 2.

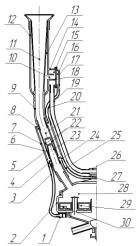


Рисунок 1 - Схема адаптивного доильного аппарата 1 - магнитоуправляемый пневмоклапан; 2 - четырехкамерный коллектор; 3 - патрубок; 4 - калиброванный канал; 5 - эластичная трубка; 6 - корпус; 7 - регулятор вакуумметрического давления; 8 - межстенная камера; 9 - патрубок; 10 - патрубок; 11 - подсосковая камера; 12 - доильный стакан; 13 - межстенная камера; 14 - регулятор вакуумметрического давления; 15 - камера переменного вакуумметрического давления; 16 - камера управления; 17 - мембрана; 18 - щель; 19 - патрубок; 20 - патрубок; 21 - камера переменного вакуумметрического давления; 22 - щель; 23 - Т-образный патрубок; 24 - калиброванный канал; 25 - патрубок; 26 - распределительная камера; 27 - распределитель; 28 - молокоприемная камер; 29 - поплавок; 30 - магнит.

Technical service of agriculture, forestry and transport systems

Доильный аппарат обеспечивает в процессе доения изменение вакуумного режима как в межстенной, так и подсосковой камере доильного стакана, в зависимости от интенсивности потока молока, регистрируемого поплавковым датчиком. Согласно описанию принципа действия регулятора вакуумметрического давления в подсосковой камере доильного стакана трубка 1 (рисунок 2) находится под действием внутреннего $P_{\rm M}$ и внешнего $P_{\rm vnp}$ вакуумметрических давлений. Рассмотрим ее как круглую цилиндрическую трубку из упругого материала, подчиняющегося закону Гука.

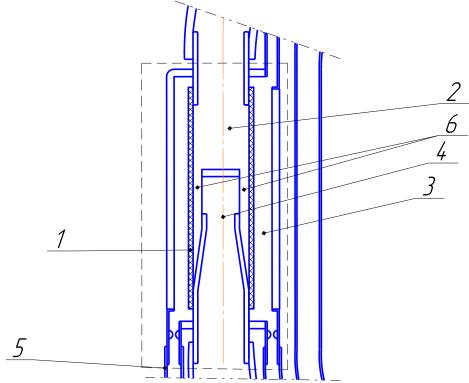


Рисунок 2 - Схема регулятора вакуумметрического давления

Очевидно, что внутреннее вакуумметрическое давление $P_{\rm d}$ в камере 2, сообщаемой с подсосковой камерой доильного стакана, зависит от внешнего вакуумметрического давления $P_{\text{упр}}$ в камере 3, так как трубка 1, деформируясь в сторону камеры 2 под воздействием перепада давления между камерами 2 и 3, стремится разъединить камеры 2 и 4, тем самым ограничивая отсос воздуха по патрубку 5 через щели 6 из камеры 2 и далее подсосковой камеры доильного стакана. В результате, вакуумметрическое давление в камере 2 будет стремиться к значению вакуумметрического давления в камере 3.

Концы трубки 1 жестко зафиксированы, а в поперечном направлении стенки трубки имеют возможность перемещения. Допустим, что трубка 1 в корпусе регулятора установлена без предварительного натяжения. Тогда при условии, что:

$$P_{\rm A} = P_{\rm VIID} = 0$$

 $P_{\rm д} = P_{\rm ynp} = 0,$ деформации и напряжения в стенке трубки отсутствуют, а при $P_{\rm д}$ и $P_{\rm ynp}$ не равным нулю существуют перемещения w от начального состояния к рассматриваемому деформированному.

Определим уменьшение диаметра $\Delta d_{\rm TP}$ трубки по длине под воздействием внешней нагрузки до потери устойчивости ее цилиндрической оболочки, условия которой приведены в специальной литературе [4]. Для этого допустим, что при P_{π} и P_{vnn} не равным нулю образующая АВ трубки 1 (рисунок 3) в деформированном состоянии представляет собой дугу радиусом R, в то время как при условии она представляет собой прямую, являющуюся хордой AB дуги AB.

Technical service of agriculture, forestry and transport systems

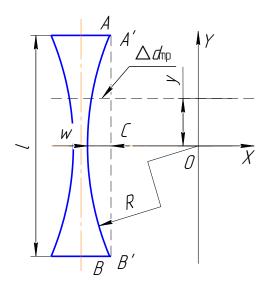


Рисунок 3 - Деформация трубки под внешней нагрузкой

Тогда мы можем записать:

$$\frac{l}{2} = \sqrt{R^2 - (R - w)^2},\tag{1}$$

где l - длина трубки, m; w — прогиб трубки, m.

Откуда:

$$R = \frac{l^2 + 4w^2}{8w} \,. \tag{2}$$

Расположим начало Декартовой системы координат в центре O окружности радиусом R, дуга AB которой является образующей трубки 1 в деформированном состоянии. Тогда расстояние OC от центра O окружности до хорды AB будет равно:

$$OC = \sqrt{R^2 - \left(\frac{l}{2}\right)^2}.$$
 (3)

Отсюда мы можем определить уменьшение диаметра Δd_{TP} трубки по ее длине:

$$\Delta d\tau p = 2(\sqrt{R^2 - y} - OC). \tag{4}$$

где y — ордината плоскости сечения трубки, в которой определяем уменьшение диаметра, m.:

$$-\frac{l}{2} \le y \le \frac{l}{2}.\tag{5}$$

Тогда уравнение, характеризующее изменение диаметра d_y трубки для точки с ординатой y, будет иметь вид:

$$d_y = d_1 - 2\left(\sqrt{\left(\frac{l^2 + 4w^2}{8w}\right)^2 - y^2} - \sqrt{\left(\frac{l^2 + 4w^2}{8w}\right)^2 - \left(\frac{l}{2}\right)^2}\right), (6)$$

где d_1 — наружный диаметр трубки, M.

А длину дуги АВ определим из уравнения:

$$AB = 2R\arcsin\frac{l}{2R} = \frac{l^2 + 4w^2}{4w}\arcsin\frac{4wl}{l^2 + 4w^2}.$$
 (7)

Очевидно, что трубка находится в объемном напряженном состоянии. Определим относительные деформации ε_1 , ε_2 и ε_3 в направлениях главных напряжений при объемном напряженном состоянии, воспользовавшись законом Гука для одноосного напряженного состояния, а также зависимостью между продольной и поперечной деформациями и принципом независимости действия сил [5]. В общем виде система уравнений, характеризующих напряженное состояние, имеет вид:

Technical service of agriculture, forestry and transport systems

$$\begin{cases} \varepsilon_{1} = \frac{1}{E} [\sigma_{1} - \mu(\sigma_{2} + \sigma_{3})], \\ \varepsilon_{2} = \frac{1}{E} [\sigma_{2} - \mu(\sigma_{1} + \sigma_{3})], \\ \varepsilon_{3} = \frac{1}{E} [\sigma_{3} - \mu(\sigma_{2} + \sigma_{1})], \end{cases}$$
(8)

где ε_1 , ε_2 и ε_3 – относительные деформации соответственно в радиальном, окружном и продольном направлении трубки; σ_1 , σ_2 и σ_3 – соответственно радиальное, окружное и продольное напряжение, H/M^2 ; E – модуль упругости, H/M^2 ; μ - коэффициент поперечной деформации (коэффициент Пуассона).

Относительную деформацию $\varepsilon_1^{\mathfrak{p}}$ в радиальном направлении мы можем представить в виде:

$$\varepsilon_1^{\rm p} = \frac{\Delta h}{h} = \frac{\sigma_1}{E},\tag{9}$$

где Δh – деформация стенки трубки, M; h – толщина стенки трубки, M.

Тогда в окружном и продольном направлениях относительная деформация $\varepsilon_{1(23)}^{\rm p}$ может быть представлена в виде:

$$\varepsilon_{1(23)}^{\mathrm{p}} = -\mu \frac{\Delta h}{h},\tag{10}$$

В окружном направлении относительную деформацию ε_2^{o} мы можем представить в виде:

$$\varepsilon_2^0 = \frac{\pi[(d_1 - h) - (d_y - h)]}{\pi(d_1 - h)} = \frac{(d_1 - d_y)}{(d_1 - h)} = \frac{\sigma_2}{E},\tag{11}$$

Тогда в радиальном и продольном направлениях относительная деформация $\varepsilon_{2(13)}^{0}$ может быть представлена в виде:

$$\varepsilon_{2(13)}^{p} = \pm \mu \frac{\pi(d_1 - d_y)}{\pi(d_1 - h)} = \pm \mu \frac{\sigma_2}{E},$$
 (12)

Относительная деформация ε_3^{Π} в продольном направлении представляет собой отношение разности длин дуги хорды к длине хорды и описывается следующим уравнением:

$$\varepsilon_3^{\Pi} = AB - A'B' = \frac{\sigma_3}{r},\tag{13}$$

Тогда в радиальном и окружном направлениях относительная деформация $\varepsilon_{3(12)}^{\Pi}$ может быть представлена в виде:

$$\varepsilon_{3(12)}^{\Pi} = -\mu(AB - A'B') = -\mu \frac{\sigma_3}{F},$$
 (14)

Перепишем систему уравнений с учетом полученных зависимостей:

уравнении с учетом полученных зависимостеи:
$$\begin{cases} \frac{\Delta h}{h} + \mu \frac{\pi(d_1 - d_y)}{\pi(d_1 - h)} - \mu \frac{(AB - A'B')}{AB} = \frac{1}{E} [\sigma_1 - \mu(\sigma_2 + \sigma_3)], \\ \frac{(d_1 - d_y)}{(d_1 - h)} + \mu \frac{\Delta h}{h} - \mu \frac{(AB - A'B')}{AB} = \frac{1}{E} [\sigma_2 - \mu(\sigma_1 + \sigma_3)], \\ \frac{(AB - A'B')}{AB} + \frac{\Delta h}{h} + \mu \frac{\pi(d_1 - d_y)}{\pi(d_1 - h)} = \frac{1}{E} [\sigma_3 - \mu(\sigma_2 + \sigma_1)], \end{cases}$$
(15)

Решая данную систему уравнений, мы можем определить радиальное напряжение σ_1 , возникающее при деформации трубки на величину w:

деформации трубки на величину
$$w$$
:
$$\sigma_{1} = \frac{E\left[\frac{\Delta h}{h} + \mu \frac{\pi(d_{1} - d_{y})}{\pi(d_{1} - h)} - \mu \frac{(AB - A'B')}{AB}\right] + \mu E\left[\frac{(d_{1} - d_{y})}{(d_{1} - h)} + \mu \frac{\Delta h}{h} - \mu \frac{(AB - A'B')}{AB}\right]}{\left(1 - \mu^{2} - \frac{\mu^{3} + \mu^{4}}{1 - \mu^{2}} - \frac{+\mu^{2} + \mu^{3}}{1 - \mu^{2}}\right)} + \frac{\mu^{2} E\left[\frac{(AB - A'B')}{AB} + \frac{\Delta h}{h} + \mu \frac{\pi(d_{1} - d_{y})}{\pi(d_{1} - h)}\right] - \mu^{3} E\left[\frac{(d_{1} - d_{y})}{(d_{1} - h)} + \mu^{3} \frac{\Delta h}{h} - \mu^{3} \frac{(AB - A'B')}{AB}\right]}{\left(1 - \mu^{2}\right)\left(1 - \mu^{2} - \frac{\mu^{3} + \mu^{4}}{1 - \mu^{2}} - \frac{+\mu^{2} + \mu^{3}}{1 - \mu^{2}}\right)} + \frac{\mu E\left[\frac{(AB - A'B')}{AB} + \frac{\Delta h}{h} + \mu \frac{\pi(d_{1} - d_{y})}{\pi(d_{1} - h)}\right] - \mu^{2} E\left[\frac{(d_{1} - d_{y})}{(d_{1} - h)} + \mu \frac{\Delta h}{h} - \mu \frac{(AB - A'B')}{AB}\right]}{\left(1 - \mu^{2}\right)\left(1 - \mu^{2} - \frac{\mu^{3} + \mu^{4}}{1 - \mu^{2}} - \frac{+\mu^{2} + \mu^{3}}{1 - \mu^{2}}\right)},$$

$$(16)$$

Technical service of agriculture, forestry and transport systems

где σ_1 – не что иное, как перепад давлений на стенке трубки:

$$\sigma_1 = P_{\text{VIII}} - P_{\pi} . \tag{17}$$

 $\sigma_1 = P_{\rm ynp} - P_{\rm д} \ . \eqno (17)$ Отсюда искомое значение внешнего вакуумметрического давления $P_{\rm ynp}$ в камере 3 будет равно:

$$P_{y\pi p} = P_{\pi} + \frac{E\left[\frac{\Delta h}{h} + \mu \frac{\pi(d_1 - d_y)}{\pi(d_1 - h)} - \mu \frac{(AB - A'B')}{AB}\right] + \mu E\left[\frac{(d_1 - d_y)}{(d_1 - h)} + \mu \frac{\Delta h}{h} - \mu \frac{(AB - A'B')}{AB}\right]}{\left(1 - \mu^2 - \frac{\mu^3 + \mu^4}{1 - \mu^2} - \frac{+\mu^2 + \mu^3}{1 - \mu^2}\right)} + \frac{\mu^2 E\left[\frac{(AB - A'B')}{AB} + \frac{\Delta h}{h} + \mu \frac{\pi(d_1 - d_y)}{\pi(d_1 - h)}\right] - \mu^3 E\left[\frac{(d_1 - d_y)}{(d_1 - h)} + \mu^3 \frac{\Delta h}{h} - \mu^3 \frac{(AB - A'B')}{AB}\right]}{\left(1 - \mu^2\right)\left(1 - \mu^2 - \frac{\mu^3 + \mu^4}{1 - \mu^2} - \frac{+\mu^2 + \mu^3}{1 - \mu^2}\right)} + \frac{\mu E\left[\frac{(AB - A'B')}{AB} + \frac{\Delta h}{h} + \mu \frac{\pi(d_1 - d_y)}{\pi(d_1 - h)}\right] - \mu^2 E\left[\frac{(d_1 - d_y)}{(d_1 - h)} + \mu \frac{\Delta h}{h} - \mu \frac{(AB - A'B')}{AB}\right]}{\left(1 - \mu^2\right)\left(1 - \mu^2 - \frac{\mu^3 + \mu^4}{1 - \mu^2} - \frac{+\mu^2 + \mu^3}{1 - \mu^2}\right)}.$$
(18)

Очевидно, что перемещение трубки w обусловлено интенсивностью истечения потока молока из подсосковой камеры доильного стакана в трубку, интенсивностью откачивания воздуха по этому же пути, а также размером щели 6 между отверстиями патрубка 5 (рисунок 2.11) и внутренней стенкой трубки 1:

$$w = \Delta s - (a_1 + a_2). \tag{19}$$

где Δs - размер щели между отверстиями патрубка и внутренней стенкой трубки, m; a_1 — перемещение трубки, зависящее от интенсивности потока молока, м; a_2 — перемещение трубки, зависящее от интенсивности потока воздуха, м.

Отметим, что кольцевую щель, образуемую трубкой будем рассматривать как незатопленное отверстие круглой формы. В таком случае, для описания движение молока через эту щель с интенсивностью Q можно воспользоваться известным выражением [6]:

$$Q = \mu_1 S \sqrt{2g(H_0 - ek)} \tag{20}$$

где μ_1 – коэффициент расхода жидкости через прямоугольное отверстие; S – площадь поперечного сечения отверстия истечения жидкости, M^2 ; H_0 — напор истечения, м; е - коэффициент вертикального сжатия струи, определяемый соотношением a/H_o ; k – высота щели истечения жидкости, m; g – ускорение свободного падения, g = 9.81 m/c^3

Так как в патрубке 5 два сливных отверстия, то площадь поперечного сечения отверстия истечения молока S будет равна:

$$S = 2\pi D_m a_1. \tag{21}$$

где D_m – диаметр отверстий камеры 4 патрубка 5, M.

Напор истечения H_0 молока будет зависеть от динамического и статического напора в трубке. В силу малых скоростей перемещения молока, динамическим напором можно пренебречь, а статический напор H_0 представим как сумму статического напора H_c молока в трубке и напора, возникающего под воздействием разности давлений в трубке P_{∂} и в молокоприемной камере P_{a} :

$$H_o = H_c + (P_o - P_a)/\gamma, \tag{22}$$

 $\ddot{H_o}=\ddot{H}_c+(P_\partial$ - $P_a)/\gamma$, где γ — удельный вес молока, $\mathrm{H/m}^3$.

Отсюда:

$$Q = 2\mu_1 \pi D_m a_1 \sqrt{2g \left[H_o + \frac{(P_{\mu} - P_a)}{\gamma} - a_1 e \right]}.$$
 (23)

Так как произведение a_1e весьма мало, им можно пренебречь. Поэтому выражение (см. 23) приобретает вид:

$$a_{1} = \frac{Q}{2\mu_{1}\pi D_{m} \sqrt{2g\left[H_{o} + \frac{(P_{\mathcal{A}} - P_{a})}{\gamma}\right]}}.$$
 (24)

Technical service of agriculture, forestry and transport systems

Для определения перемещения мембраны a_2 в связи с необходимостью образования щели для откачки воздуха из [7]:

$$Q_{\rm B} = \frac{\pi d_n^4}{128\mu_{\rm B}\delta_k} \big(P_{\rm A} - P_a \big). \tag{25}$$
 где $Q_{\rm e}$ — расход воздуха через трубку, M^3/c ; d_n — приведенный диаметр отверстия

где $Q_{\rm g}$ — расход воздуха через трубку, ${\it m}^3/c$; $d_{\it n}$ — приведенный диаметр отверстия для расхода воздуха, ${\it m}$; $\mu_{\it g}$ — динамическая вязкость воздуха, ${\it m}^2$: c; $\delta_{\it k}$ — толщина стенки отверстия, ${\it m}$.

С учетом наличия двух отверстий для откачки воздуха, приведенный диаметр d_n можно представить в следующем виде:

$$d_{\Pi} = \sqrt{8D_m a_2}.\tag{26}$$

Тогда уравнение (см. 25) с учетом (см. 26) приобретает вид:

$$Q_{\rm B} = \frac{4\pi D_m^3 a_2^3}{\mu_{\rm B} \delta_k} \left(P_{\rm A} - P_a \right). \tag{27}$$

Преобразовав выражение (см. 27), получим искомое значение a_2 :

$$a_2 = \sqrt[3]{\frac{\mu_{\rm B} \delta_k Q_{\rm B}}{4\pi D_m^3 (P_{\rm A} - P_a)}}.$$
 (28)

Тогда полное перемещение трубки будет равно:

$$w = \Delta s - \frac{Q}{2\mu_1 \pi D_m \sqrt{2g \left[H_o + \frac{(P_A - P_a)}{\gamma}\right]}} - \sqrt[3]{\frac{\mu_B \delta_k Q_B}{4\pi D_m^3 (P_A - P_a)}}.$$
 (29)

Отсюда, с учетом полученного уравнения для расчета полного перемещения трубки, мы можем определить внешнее управляющее давление P_{ynp} для обеспечения необходимого вакуумметрического давления доения коровы в зависимости от интенсивности потока молока.

Для исследований рабочего процесса регулятора вакуумметрического давления в подсосковой камере доильного стакана нами был разработан тензометрический стенд (рисунок 4), включающий блок питания 1 «Агат», связанный с тензоусилителем 2 «Топаз-4», осциллограф 3 P-500A, компьютер 4, а также исследуемый регулятор вакуумметрического давления, выполненный в виде межстенной камеры 5, образуемой жестким корпусом 6 и эластичной трубкой 7, и камеры 8 переменного вакуумметрического давления внутри трубки.

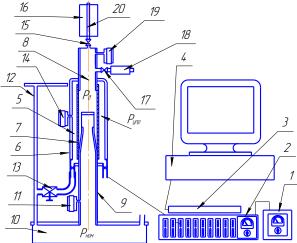


Рисунок 4 - Схема стенда для исследований рабочего процесса регулятора вакуумметрического давления в подсосковой камере доильного стакана

Для проверки адекватности математической и эмпирической моделей зависимости вакуумметрического давления в подсосковой камере доильного стакана в качестве факторов, влияющих на этот параметр, выбирали вакуумметрическое давление в каме-

Technical service of agriculture, forestry and transport systems

ре управления, а также длину и диаметр трубки регулятора вакуума. Как показывают расчеты (рисунок 5), при диаметре отверстия патрубка, дросселируемого внутренней поверхностью трубки, равном 0,005 м, с ростом потока молока через регулятор от 0 до 2000 мл/мин наблюдается уменьшение прогиба трубки немногим менее, чем на 0,5 мм, в то время как для диаметра отверстия 0,011 перемещение стенки трубки уменьшается на 0,2 мм.

В результате обработки результатов измерений установлено, что экспериментальные данные достаточно точно могут быть представлены в виде математических моделей (рисунок 6). Например, для трубки длиной 45 *мм* и диаметром 28 *мм*:

$$y=-3,09861+0,97222x_2+0.000463x_2^2$$
. (30)

где: y — давление в межстенной камере регулятора, $\kappa \Pi a$; x_1 — интенсивность потока молока, $\kappa \pi / c$; x_2 — вакуумметрическое давление доения, $\kappa \Pi a$.

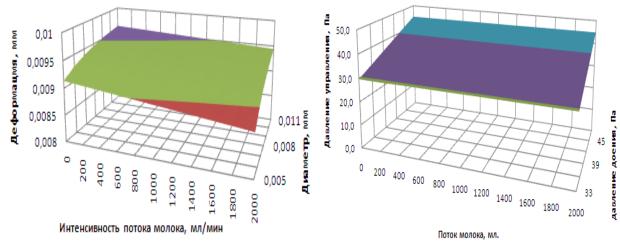


Рисунок 5 - Деформация трубки регулятора вакуумметрического давления

Рисунок 6 - Характер зависимости вакуумметрического давления в межстенной камере регулятора от интенсивности потока молока и давления доения для трубки длиной 45 мм и диаметром 28 мм

Для трубки длиной 45 мм и диаметром 33 мм:

$$y=-2,10139+0,929167x_2+0,000926x_2^2$$
. (31)

Для трубки длиной 45 мм и диаметром 38 мм:

$$y=-2,10139+0,92917x_2+0.00093x_2^2$$
. (32)

Близкий к единице коэффициент детерминации для данных уравнений (R^2 =0,99961...0,99998), очень большое расчетное значение статистики F (f=29656,2...67396,2) и ничтожно малая значимость F=2,83 \cdot 10 \cdot 7...8,4 \cdot 10 \cdot 7, свидетельствуют о высокой адекватности моделей.

Рассматривая по результатам исследований вакуумметрическое давление в межстенной камере регулятора при давлении доения 33 кПа и 48 кПа как функцию от длины и диаметра трубки, мы получили эмпирические модели вида:

Для вакуумметрического давления доения 33 кПа:

$$y=16,2918+0,393x_3+0.09733x4_2-0,001x_3x_4-0,00267x_3^2-0.00067x_4^2$$
, (33)

где: x_3 – длина трубки, мм; x_4 – диаметр трубки, мм.

Для вакуумметрического давления доения 48 кПа:

$$y=30.2+0.5x_3-7.10^{-16}x_4-7.7.10^{-18}x_3x_4-0.004x_3^2+5.7.10^{-18}x_4^2$$
 (34)

Так, в регуляторе вакуумметрического давления с трубкой длиной 45 мм и толщиной стенки 2 мм, модуле упругости материала трубки 2 МПа, диаметре отверстий Тобразного патрубка 0,005м, кинематической вязкости воздуха 0,000017 Пас, щели между отверстиями Тобразного патрубка и внутренней стенкой трубки 0,01м, и давлении в магистрали доильного аппарата 50 кПа, при необходимости доения давлением 33

Technical service of agriculture, forestry and transport systems

кПа, в межстенной камере должно быть давление 29,4 кПа, а при доении с давлением 48 кПа - 44,6 кПа. В регуляторе с длиной трубки 55 мм возрастание давления доения с 33 кПа до 48 кПа обеспечивается изменением давления в межстенной камере регулятора с 30,4 до 45,5 кПа.

Для проведения производственных испытаний был изготовлен опытный образец доильного аппарата с регуляторами вакуумметрического давления в подсосковых камерах, выполненными в молочных трубках доильных стаканов (рисунок 7).

Рисунок 7 - Общий вид доильного аппарата

Установлено, что разработанный доильный аппарат работоспособен и эффективен на всех режимах доения коров. Как показывают результаты исследований, экспериментальный доильный аппарат способствует более полной реализации рефлекса молокоотдачи по сравнению с доильным аппаратом «Гасконье Мелотт». Экономическая эффективность экспериментального доильного аппарата, а также экспериментального переносного адаптивного манипулятора доения коров складывалась из эффективности от снижения затрат труда при их использовании, увеличения продуктивности коров и снижения заболеваемости маститом. Доение коров экспериментальным доильным аппаратом обеспечивает достижение экономического эффекта по приведенным затратам, который составляет 29585,41 рублей. В расчете на одну первотелку эта сумма равна 139,55 рубля. Годовой экономический эффект доильного аппарата с учетом приведенных затрат и полноты выдаивания, в расчете на 212 коров, составляет 642201,81 рубля, а на одну голову — 3029,25 рубля.

Литература

- 1. Еремин А.Г. Зоотехническое обоснование выбора доильных машин. /А.Г. Еремин М.: Россельхозиздат, 1973.
- 2. Кормановский Л.П. Новый этап технического прогресса в машинном доении /Л.П. Кормановский // Техника в сельском хозяйстве. 1995. N 4.

Technical service of agriculture, forestry and transport systems

- 3. Патент №2367147 RU, C1 МПК A 01 J 5/04 Адаптивный доильный аппарат/Ужик О.В., Ужик Я.В. (RU). №2008128329/12; Заявлено 11.07.2008; Опубл. 20.09.2009, Бюл. №26
- 4. Соловьев С.А. Исполнительные механизмы системы «человек машина животное». /С.А. Соловьев, Л.П. Карташов Екатеринбург: УрОРАН, 2001. 179 с.
- 5. Феодосьев В.И. Сопротивление материалов //Учебник, Изд. шестое, стереотипное. Главная редакция физико-математической литературы изд-ва «Наука», 1972 г. 544 с
- 6. Константинов Ю.М. Гидравлика //Учебник. 2-е изд. перераб. И доп. К.: Вища школа, $1988 \, \text{г.} 398 \, \text{c.}$
- 7. Мельников С.В. Технологическое оборудование животноводческих ферм и комплексов //Учебное пособие для студентов вузов. 2-е изд. перераб.. Л.Агропромиздат, 1985. 640 с.: ил.

Technical service of agriculture, forestry and transport systems

Uzhik O. Milking machines harmless for cows

Mathematical modeling of workflow control vacuum pressure. The equations for calculation of its basic design parameters.

Keywords: milking machine, regulator, tubing, a cow's udder.

References

- 1. Eremin AG Zootechnik rationale for the choice of milking machines. / AG Eremin M. Rosselhozizdat, 1973.
- 2. Kormanovskiy LP New stage of technological progress in milking machines / LP Kormanovskiy / / Technology in agriculture. 1995. № 4.
- 3. Patent number 2,367,147 RU, C1 IPC A 01 J 5/04 Adaptive milking machine / uzhik OV uzhik Y. (RU). № 2008128329/12; Reported 11.07.2008; Publ. 20.09.2009, Bull. Number 26
- 4. Soloviev SA Actuators system "man machine animal." / SA Soloviev, LP Kartashow Yekaterinburg UrORAN 2001. 179 p.
- 5. Feodosyev VI Strength of materials // Method, Ed. the 6th, stereotypical. Home Edition physical and mathematical literature publishing house "Nauka", 1972 544.
- 6. Konstantinov YM Hydraulics / / tutorial. 2nd ed. rev. And add. K.: Visha School, 1988 398.
- 7. Melnikov SV Technological equipment livestock farms and complexes // Tutorial for students. 2nd ed. Rev. .. L.Agropromizdat, 1985. 640 p.: il.