Technical service of agriculture, forestry and transport systems

Харченко С.А. Семенцов В.І. Аблуев М.М.

Харьковский национальный технический университет сельского хозяйства имени Петра Василенко

Коротий В.А.

Харьковский автотранспортный техникум им. С. Орджоникидзе

ОСЕСИММЕТРИЧНЫЕ КОЛЕБАНИЯ КОЛЬЦЕВОГО ЗЕРНОВОГО СЛОЯ ПРИ ДВИЖЕНИИ ПО СТРУКТУРНОМУ РЕШЕТУ

УДК 631.362:53

В статье приведеньисследования осесимметричных колебаний кольцевого зернового слоя при движении по структурному цилиндрическому решету зерновых сепараторов, получены математические выражения.

Постановка проблемы. Физические модели динамики движущихся зерновых смесей (3C) по плоским и цилиндрическим виброрешетам[1-5] показали свою адекватность.

В результате проведенных исследований разработана модель динамики пузырьковой псевдоожиженной ЗС по плоским структурным виброрешетам, которая такжепоказала свою эффективность [6-9]. Последующий анализ способов и выбор эффективного направления моделирования динамики пузырьковых псевдоожиженных зерновых смесей на цилиндрических виброрешетах с учетом структурности решет и свойств смеси позволит значительно расширить область применения предварительно полученных математических моделей.

Цель работы: исследования осесимметричных колебаний кольцевого зернового слоя при движении по структурному цилиндрическому решету зерновых сепараторов.

Основной материал. В результате исследований [10] получена начально-краевая задача, которая позволяет моделировать процесс просеваемости кольцевого зернового слоя в цилиндрических зерновых сепараторах.

Принимаем r, φ, z - цилиндрическою систему координат связанная с решетом. Поверхность решета представляет собой двумерно-периодическую структуру с периодом Δz вдоль аксиальной координаты z и периодом $\Delta \varphi R$ вдоль азимутальной координаты φ . Периодическая структура (решето) получается трансляцией базовой ячейки вдоль оси z и вдоль образующей цилиндрического решета, соответственно, на $n\Delta z$ и $m\Delta \varphi R$, где n, m - целые числа. Принимаем R - радиус цилиндрической поверхности решета, а h - толщина кольцевого слоя зерновой смеси.

Поле относительной скорости \vec{V} удовлетворяет уравнению

$$\rho \left(\frac{\partial \vec{V}}{\partial t} + (\vec{V}, \nabla) \vec{V} \right) = -\nabla P - \rho g \vec{e}_z + \vec{F} + \mu \Delta \vec{V}. \tag{1}$$

где сила инерции равна

$$\vec{F} = -\vec{a}_0 \rho - 2\vec{\Omega} \times \vec{V} \rho - \vec{\Omega} \times (\vec{\Omega} \times \vec{r}) \rho ,$$

где $-\vec{a}_0 \rho$ - сила инерции поступательного движения решета; $-2\vec{\Omega} \times \vec{V} \rho$ - Кариолисова сила; $-\vec{\Omega} \times (\vec{\Omega} \times \vec{r}) \rho$ - центробежная сила;

P – избыточное давление, g - ускорение свободного падения.

Принимаем начальные и краевые условия:

$$- div\vec{V} = 0; (2)$$

- избыточное давление и поле скорости относительного движения $ec{V}$:

$$P|_{t\leq 0}=0, \qquad \vec{V}|_{t\leq 0}=0.$$
 (3)

Technical service of agriculture, forestry and transport systems

- базовой ячейкой такой структуры является область:

$$D = \left\{ (\varphi, z); -\frac{R\Delta\varphi}{2} \le \varphi \le \frac{R\Delta\varphi}{2}, -\frac{\Delta z}{2} \le z \le \frac{\Delta z}{2} \right\}$$

на которой расположено N отверстий $D_1, D_2 \dots D_N$.

-при r = R - h, тензор напряжений $((\sigma_{ij})_{i,j=k}^3$ псевдожидкости с пузырьками

$$\sigma_{ij}\Big|_{r=R-h} = 0$$
, $i, j = 1, 2, 3$; (4)

Тензор напряжений определяется по зависимостям:

$$\sigma_{11} = -P + 2\mu \frac{\partial V_r}{\partial r}, \ \sigma_{22} = -P + \frac{2\mu}{r} \left(\frac{\partial V_{\varphi}}{\partial \varphi} + V_r \right), \ \sigma_{33} = -P + 2\mu \frac{\partial V_z}{\partial z},$$

$$\sigma_{12} = \sigma_{21} = \mu \left(r \frac{\partial}{\partial r} \left(\frac{V_{\varphi}}{r} \right) + \frac{1}{r} \frac{\partial V_r}{\partial \varphi} \right), \ \sigma_{13} = \sigma_{31} = \mu \left(r \frac{\partial V_r}{\partial z} + \frac{\partial V_z}{\partial r} \right),$$

$$\sigma_{23} = \sigma_{32} = \mu \left(\frac{1}{r} \frac{\partial V_z}{\partial \varphi} + \frac{\partial V_{\varphi}}{\partial z} \right).$$
(5)

При r = R - h должны выполнятся следующие соотношения

$$\left(-p+2\mu\frac{\partial V_r}{\partial r}\right)\Big|_{r=R-h} = \left[-p+\frac{2\mu}{r}\left(\frac{\partial V_{\varphi}}{\partial \varphi}+V_r\right)\right]\Big|_{r=R-h} = \left(-p+2\mu\frac{\partial V_z}{\partial z}\right)\Big|_{r=R-h} = 0,$$
(6)

$$\left(\frac{\partial V_r}{\partial z} + \frac{\partial V_z}{\partial r}\right)\Big|_{r=R-h} = \left(\frac{\partial V_z}{\partial \varphi} + \left(R - h\right)\frac{\partial V_\varphi}{\partial z}\right)\Big|_{r=R-h} = 0, \tag{7}$$

$$\left[\left(R - h \right) \frac{\partial V_{\varphi}}{\partial r} - V_{\varphi} + \frac{\partial V_{r}}{\partial \varphi} \right]_{r=R-h} = 0.$$
(8)

Будем рассматривать решение начально-краевой задачи (1)-(8) не зависящее от азимутальной координаты φ (осесимметричные колебания). Кроме того, будем предполагать, что нелинейным членом $(\vec{V}, \nabla)\vec{V}$ в уравнении (1) можно пренебречь. Отметим, что учет этого члена можно осуществить с помощью метода последовательных приближений. Задача аналогична с колебаниями зернового слоя на плоском решете [5-8].

Представим уравнения (1) и (2) в цилиндрической системе координат. Тогда после ряда преобразований будем иметь:

$$\frac{\partial V_r}{\partial t} = -\frac{1}{\rho} \frac{\partial P}{\partial r} - 2V_{\varphi} \Omega + r\Omega^2 + v \left(\Delta V_r - \frac{V_r}{r^2} \right), \tag{9}$$

$$\frac{\partial V_{\varphi}}{\partial t} = -2V_r \Omega + v \left(\Delta V_{\varphi} - \frac{V_{\varphi}}{r^2} \right), \tag{10}$$

$$\frac{\partial V_z}{\partial t} = -\frac{1}{\rho} \frac{\partial P}{\partial z} - g + A\omega^2 \sin \omega t + v\Delta V_z, \qquad (11)$$

$$r\frac{\partial V_r}{\partial r} + V_r + r\frac{\partial V_z}{\partial z} = 0. \tag{12}$$

Здесь: $v = \mu/\rho$ - кинематический коэффициент вязкости псевдожидкости с пузырь-

ками, моделирующей кольцевой зерновой слой; $\Delta = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) + \frac{\partial^2}{\partial z^2}$ - оператор Лапласа

Technical service of agriculture, forestry and transport systems

в цилиндрической системе координат; μ - эффективный коэффициент динамической вязкости, который определяется по [11, 12]

В уравнениях (9) – (12) учтено, что поле относительной скорости \vec{V} и избыточное давление P не зависят от азимутальной координаты φ .

Сформулируем начальные и краевые условия. Будем полагать, что для временной переменной $t \le 0$:

$$V_{r}|_{t\leq 0} = V_{\varphi}|_{t\leq 0} = V_{z}|_{t\leq 0} = P|_{t\leq 0} = 0.$$
(13)

На свободной поверхности кольцевого слоя, согласно (6) – (8), поле скорости \vec{V} и избыточное давление P должны удовлетворять условиям:

$$\left(-p+2\mu\frac{\partial V_r}{\partial r}\right)_{r=R-h}=0, \tag{14}$$

$$\left(\frac{\partial V_r}{\partial z} + \frac{\partial V_z}{\partial r}\right)_{r=R-h} = 0, \tag{15}$$

$$\left(-p + 2\mu \frac{\partial V_z}{\partial z}\right)_{r=R-h} = 0, \tag{16}$$

$$\left(\left(R - h \right) \frac{\partial V_{\varphi}}{\partial r} - V_{\varphi} \right) \Big|_{r=R-h} = \frac{\partial V_{\varphi}}{\partial z} \Big|_{r=R-h} = 0.$$
(17)

Будем полагать, что на внутренней поверхности решета тангенциальные компоненты относительной скорости обращаются в нуль. Для абсолютной скорости это условие имеет вид:

$$V_z^a\big|_{r=R} = A\omega\cos\omega t, V_\omega^a\big|_{r=R} = \Omega R, \tag{18}$$

где V_z^a и V_φ^a - тангенциальные к поверхности решета компоненты абсолютной скорости \vec{V}_a .

Отметим, что условие (18) уже использовалось в ряде работ (см. например, [13] и библиографии в ней). Также это условие известно в гидродинамике [14] и является условием прилипания частиц зерновой смеси к внутреней поверхности решета.

Решето вдоль оси z имеет конечные размеры и, следовательно, необходимо было бы поставить соответствующие краевые условия на концах решета. Будем полагать, что эти условия слабо влияют на движение зернового слоя в центральной части решета.

Как уже отличалось выше, решето является периодической структурой вдоль координаты z. Поэтому решение задачи (9) - (18) будем искать в виде рядов Фурье по базисным

функциям $\left(e^{i\frac{2\pi n}{l}z}\right)_{n=-\infty}^{+\infty}$, где l - период повторения отверстий решета вдоль координаты z:

$$V_{r} = \sum_{n=-\infty}^{+\infty} V_{nr}(r,t) e^{i\frac{2\pi n}{l}z}, V_{\varphi} = \sum_{n=-\infty}^{+\infty} V_{n\varphi}(r,t) e^{i\frac{2\pi n}{l}z},$$
(19)

$$V_{z} = \sum_{n=-\infty}^{+\infty} V_{nz}(r,t) e^{i\frac{2\pi n}{l}z}, P = \sum_{n=-\infty}^{+\infty} P_{n}(r,t) e^{i\frac{2\pi n}{l}z}.$$
 (20)

Подставим (19) и (20) в (9) – (12) и воспользуемся ортогональностью базисных функций $e^{i\frac{2\pi n}{l}z}$ на интервале (-l/2;l/2).

Тогда будем иметь:

Technical service of agriculture, forestry and transport systems

$$\frac{\partial V_{nr}}{\partial t} = -\frac{1}{\rho} \frac{\partial P_n}{\partial r} - 2\Omega V_{n\varphi} + r\Omega^2 \delta_{on} + v \left(\frac{\partial^2 V_{nr}}{\partial r^2} + \frac{1}{r} \frac{\partial V_{nr}}{\partial r} - \left(\frac{2\pi n}{l} \right)^2 V_{nr} - \frac{V_{nr}}{r^2} \right), \tag{21}$$

$$\frac{\partial V_{n\varphi}}{\partial t} = -2\Omega V_{nr} + v \left(\frac{\partial^2 V_{n\varphi}}{\partial r^2} + \frac{1}{r} \frac{\partial V_{n\varphi}}{\partial r} - \left(\frac{2\pi n}{l} \right)^2 V_{n\varphi} - \frac{V_{n\varphi}}{r^2} \right), (22)$$

$$\frac{\partial V_{nz}}{\partial t} = -\frac{i \ 2\pi n}{l\rho} P_n + v \left(\frac{\partial^2 V_{nz}}{\partial r^2} + \frac{1}{r} \frac{\partial V_{nz}}{\partial r} - \left(\frac{2\pi n}{l} \right)^2 V_{nz} \right) - g \delta_{on} + A \omega^2 \sin \omega t \delta_{on}, \qquad (23)$$

$$\frac{\partial}{\partial r}(rV_{nr}) + r\frac{i \ 2\pi n}{l}V_{nz} = 0, \ n = 0, \pm 1, \pm 2,...,$$
 (24)

где $\delta_{\scriptscriptstyle on}$ - символ Кронекера.

Неизвестные функции P_{n} , V_{nr} , $V_{n\varphi}$, V_{nz} должны удовлетворять начальным и краевым условиям:

$$P_n|_{t\le 0} = 0, \ V_{nr}|_{t\le 0} = V_{n\varphi}|_{t\le 0} = V_{nz}|_{t\le 0} = 0,$$
 (25)

$$\left(-p_n + 2\mu \frac{\partial V_{nr}}{\partial r}\right)_{r=R-h} = 0, \qquad (26)$$

$$\left(\frac{i2\pi n}{l}V_{nr} + \frac{\partial V_{nz}}{\partial r}\right)_{r=R-h} = 0,$$
(27)

$$\left(-p_n + \frac{4\mu\pi ni}{l}V_{nz}\right)_{r=R-h} = 0,,$$
 (28)

$$\frac{i2\pi n}{l}V_{n\varphi}\Big|_{r=R-h} = \left[\left(R-h\right)\frac{\partial V_{n\varphi}}{\partial r} - V_{n\varphi} \right]_{r=R-h} = 0.$$
(29)

В том случае когда индекс n=0 условия (27) и (28) следует заменить следующими

$$\frac{\partial V_{oz}}{\partial r}\Big|_{r=R-h}=0,$$
(30)

$$\left((R - h) \frac{\partial V_{o\varphi}}{\partial r} - V_{o\varphi} \right)_{r=R-h} = 0.$$
(31)

В дальнейшем будем рассматривать два случая когда n=0 и $n=\pm 1;\pm 2,...$

Пусть индекс n = 0. Тогда уравнения (21) - (24) упрощается и принимаем следующий вид:

$$\frac{\partial V_{or}}{\partial t} = -\frac{1}{\rho} \frac{\partial P_o}{\partial r} - 2\Omega V_{o\varphi} + r\Omega^2 + v \left(\frac{\partial^2 V_{or}}{\partial r^2} + \frac{1}{r} \frac{\partial V_{or}}{\partial r} - \frac{V_{or}}{r^2} \right), \tag{32}$$

$$\frac{\partial V_{o\varphi}}{\partial t} = -2\Omega V_{or} + v \left(\frac{\partial^2 V_{o\varphi}}{\partial r^2} + \frac{1}{r} \frac{\partial V_{o\varphi}}{\partial r} - \frac{V_{o\varphi}}{r^2} \right), \tag{33}$$

$$\frac{\partial V_{oz}}{\partial t} = -g + A\omega^2 \sin \omega t + v \left(\frac{\partial^2 V_{oz}}{\partial r^2} + \frac{1}{r} \frac{\partial V_{oz}}{\partial r} \right), \tag{34}$$

$$V_{or} + r \frac{\partial V_{or}}{\partial r} = 0. {35}$$

Технічний сервіс агропромислового, лісового та транспортного комплексівTechnical service of agriculture, forestry and transport systems

Выводы .Таким образом, получены упрощенные уравнения динамики псевдоожиженой зерно-вой смеси по цилиндрическому структурному решету зерновых сепараторов.

Литература

- 1. Тищенко Л.Н. Интенсификация сепарирования зерна. Харьков. Основа, 2004.-224c.
- 2. Тищенко Л.Н., Мазоренко Д.И., Пивень М.В., Харченко С.А., Бредихин В.В., Мандрыко А.В. Моделирование процессов зерновых сепараторов. Харьков: "Місьдрук", 2010. 360 с.
- 3. Моделированиединамикизерновойсмеси при сепарировании на рифленомреше-те вибросепаратора /Тищенко Л.Н., Ольшанский В.П., Харченко Ф.М., Харченко С.А.// Інженерія природокористування. Харків: ХНТУСГ, 2014. № 2 (2). С. 54-61.
- 4. Тищенко Л.Н. К применениюметодовмеханикисплошныхсред для описаниядвижениязерновыхсмесей на виброрешетах / Л.Н.Тищенко, С.А.Харченко // MOTROL «Motorizationandpowerindustryinagriculture». Poland: Lublin, 2013. Vol. 15 D. №7. Р. 94-99.
- 5. Харченко С.А. К построению уравнений динамики стационарных потоков в псевдоожиженномзерновом слое на структурных виброрешетах / Харченко С.А. // Вісник ХНТУСГ: Механізаціясільськогосподарськоговиробництва. Харків:ХНТУСГ, 2014. Вип.148. С.181-186.
- 6. Харченко С.А. Построение решений уравнений динамики зерновых смесей на плоских виброрешетах / Харченко С.А. // Конструювання, виробництво та експлуатаціяс.г. машин, вип.43, ч.ІІ.-Кіровоград: КНТУ, 2013. С.287-292.
- 7. Харченко С.А. Уточнение уравнений динамики пузырьковой псевдоо-жиженой зерновой смеси по структурному виброрешету / С.А. Харчен-ко, Л.Н. Тищенко // Вібрації в техніці та технологіях. Вінниця: ВНАУ, 2014. №1 (73). С. 50 53.
- 8. Харченко С.А. К построению трехмерной гидродинамической модели динамики пузырьковой псевдоожиженой зерновой смеси по структурному виброрешету / С.А. Харченко // Праці ТДАТУ. Мелітополь, 2014. Вип.14. Т.2. С.80-85.
- 9. Харченко С.А. Результаты математического моделирования динамики псевдоожиженой зерновой смеси на плоском структурном виброрешете / С.А. Харченко // Вестник БГАТУ: МНПК «Современные проблемы освоения новой техники, технологий, организации технического сервиса в АПК», 2014. Секция 2. С.251-258.
- 10. Харченко С.А. К разработке гидродинамической модели движения зерновой смеси по цилиндрическому решету виброцентробежных сепараторов // Вісник ХНТУСГ «Технічний сервіс машин для рослинництва». Харків, 2015. Вип.159. С.60-69.
- 11. Исследование закономерностей вибровязкости зерновых смесей при сепарировании цилиндрическими виброцентробежными решетами /Л.Н. Тищенко, М.В. Пивень, С.А. Харченко, В.В. Бредихин // Сучасні напрямки технології та механізації процесів переробних і харчових виробництв: Вісник ХНТУСГ. Харків: ХНТУСГ, 2009. Вип. 88. С. 34 43.
- 12. Харченко С.А., Тищенко Л.Н. Алгоритм расчета эффективного коэффициента динамической вязкости пузырьковой псевдожидкости, модели-рующей сепарируемую зерновую смесь / С.А. Харченко, Л.Н. Тищенко // Вібрації в техніці та технологіях. 2013. \mathbb{N} 2 (70). С.64 72.
- 13. Тищенко Л.Н., Ольшанский В.П., Ольшанский С.В. Колебания зерновых потоков на виброрешетках.- Харьков: "Місьдрук", 2012.- 267 с.
- 14. Шестопалов В.П. Метод задачи Римана Гильберта в теории дифракции и распространении электромагнитных волн. Харьков: Изд-во Харьк. Университет, 1971.- 400с.

Технічний сервіс агропромислового, лісового та транспортного комплексівTechnical service of agriculture, forestry and transport systems

S. Kharchenko, V. Sementsov, V. Korotii **Axisymmetrical vibrations annular grain** layerat motion on structural sieve

To the article researches of axisymmetrical vibrations of annular grain layer at motion on structural cylindrical sieve grain separators, obtained mathematical expressions.

Reference

- 1. Tishchenko LN Intensification of grain separation. Kharkiv. Basis, 2004.- 224p.
- 2. Tishchenko LN, Mazorenko DI, Piven MV Kharchenko SA, Bredikhin VV, AV Mandryka Modelling of processes of grain separators. Kharkov: "Misdruk", 2010. 360 p.
- 3. Modelirovaniedinamikizernovoysmesi with separation on those riflenomreshe-Vibroseparator / LN Tishchenko, Olshansky VP Kharchenko FM, Kharchenko SA .// Inzheneriya prirodokoristuvannya. Kharkiv: HNTUSG, 2014. № 2 (2). S. 54-61.
- 4. Tishchenko LN By primeneniyumetodovmehanikisploshnyhsred for opisaniyadvizheniyazernovyhsmesey on vibroreshetah / L.N.Tischenko, S.A.Harchenko // MOTROL «Motorizationandpowerindustryinagriculture». Poland: Lublin, 2013. Vol. 15 D. №7. P. 94-99.
- 5. Kharchenko SA Construction of dynamical equations of stationary flows psevdoozhizhennomzernovom layer on structural vibroreshetah / Kharchenko SA // News HNTUSG: Mehanizatsiyasilskogospodarskogovirobnitstva. Kharkiv: HNTUSG, 2014 Vip.148. S.181-186.
- 6. Kharchenko SA Solutions of the equations of dynamics of grain mixes on flat vibroreshetah / Kharchenko SA // Konstruyuvannya, virobnitstvo that ekspluata-tsiyas.g. machines vip.43, ch.II.-Kirovograd: KNTU, 2013. S.287-292.
- 7. Kharchenko SA Clarification of the bubble dynamics equations psevdoo-thin the cereal mixture on structural vibroreshetu / SA Grubs-ko, LN Tischenko // Vibratsiï in tehnitsi that tehnologiyah. Vinnitsa: VNAU, 2014. №1 (73). S. 50 53.
- 8. Harchenko SA Construction of a three-dimensional hydrodynamic model of the dynamics of the bubble fluidized-grain mix for structural vibroreshetu / SA Har Marchenko // Pratsi TDATU. Melitopol, 2014 Vip.14. V.2. S.80-85.
- 9. Kharchenko SA The results of mathematical modeling of the dynamics of the pseudo-liquefaction of the cereal mixture on a flat structural vibroreshete / SA Kharchenko // Herald BSATU: PBMCs "Modern problems of development of new techniques, technologies, organization of technical service in agriculture", 2014. Section 2 S.251-258.
- 10. Harchenko SA To develop a hydrodynamic model of the motion of grain mixture cylindrical sieve vibrocentrifugal separators // News HNTUSG "Tehnichny SERVIS machines roslinnitstva". Kharkiv, 2015. Vip.159. S.60-69.
- 11. Investigation of vibrovyazkosti grain mixes with separation-vanii cylindrical vibrocentrifugal /L.N sieves. Tishchenko, MV Piven, SA Kharchenko VV Bredikhin // Suchasni napryamki tehnologii that mehanizatsiiprotsesivpe-rerobnih i harchovihvirobnitstv: News HNTUSG. Kharkiv: HNTUSG, 2009. Vip. 88. P. 34 43.
- 12. Harchenko SA Tishchenko LN The algorithm for calculating the effective coefficient of dynamic viscosity of pseudo-liquid bubble, model-ating Separated cereal mixture / SA Kharchenko LN Tischenko // Vibratsiï in tehnitsi that tehnologiyah. 2013. №2 (70). P.64 72.
- 13. LN Tishchenko, VP Olshansky, Olshansky SV Fluctuations in grain flows on vibroreshetkah.- Kharkov: "Misdruk", 2012.- 267 p.
- 14. Shestopalov VP Riemann problem method Hilbert in the theory of diffraction and propagation of electromagnetic waves. Kharkov: Publishing House of Kharkov. University, 1971.-400c.